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1. Introduction

This is a demo for using the tensorICA package in R. The tensorICA package is designed for fast decom-
position analysis of tensor-valued multi-omic data. It contains several functions for decomposing multi-omic
tensor-valued data implementing two tensorial ICA methods and several utility functions for visualizing the
relationship between component against phenotype to help with feature selection. Tensorial ICA aims to
infer from a data-tensor, statistically independent sources of data variation, which should better correspond
to underlying biological factors. Indeed, since biological sources of data variation are generally non-Gaussian
and often sparse, the statistical independence assumption implicit in the ICA formalism can help improve
the deconvolution of complex mixtures and thus better identify the true sources of data variation. In the
package, we here include two tensorial methods call JADE and FOBI, which are the abbreviation of tensorial
joint approximate diagonalization of high-order eigenmatrices and tensorial fourth-order blind identication,
respectively. These two methods have been elaborated in tensorBSS package.

2. Get started with tensorICA package

Tensorial ICA works by decomposing a data tensor into a source tensor and mixing matrices. The key
property of tICA is that the independent components in source tensor are as statistically independent from
each other as possible. Statistical independence is a stronger criterion than linear decorrelation and allows
improved inference of sparse sources of data variation. A prior tensorial PCA is requested as a whitening
step to reduce the noise. Positive kurtosis can be used to rank independent components to select the most
sparse factors. The largest absolute weights within each independent component can be used for feature
selection, while the corresponding component in the mixing matrices informs about the pattern of variation
of this component across data types and samples, respectively.

2.1 Load tensorICA package and example data

We expect the tensorial ICA methods can capture the variation correlated to the phenotype. However, eval-
uating methods on real data objectively is challenging due to the difficulty of defining a goldstandard set of
true positive associations. Fortunately, a meta-analysis of several smoking EWAS in blood has demonstrated
that smoking-associated differentially methylated CpGs are highly reproducible, defining a gold-standard set
of 62 smoking-associated CpGs. In addition, it has been showed that all 62 smoking-associated CpGs are
associated with smoking exposure effectively if DNA methylation is measured in buccal cell. So, here we
use a small tensor-valued DNA methylation dataset meatured on blood and buccal tissues as an example
dataset to test methods in terms of their ability to identify these 62 smoking-associated CpGs with their
corresponding smoking phenotype information. This tensor dataset consists of two matched HumanMethy-
lation450 BeadChip data matrices meatured on blood and buccal. In each tissue layer matrix, the data is
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defined over the same CpG sites (columns) and the same individuals (rows). Because there are two distinct
samples (blood and buccal) per individual, most of the variation is genetic. Hence, to reduce this background
genetic variation, the CpG sites contained in the tensor dataset are obtained by combining 1000 non-smoking
associated CpGs with the 62 smoking associated CpGs. We expect tensorICA can capture the components
which correlated to smoking phenotype with large weight on the 62 smoking associated CpGs.
The input example data buccalbloodtensor is stored in the package. We can load it with following com-
mands.

> library(tensorICA);

> data(buccalbloodtensor);

It is a list that contains all the data we are going to use the this demo. buccalbloodtensor is a list containing
4 elements. Thereinto, the test tensor-valued DNA methylation dataset is stored in buccalbloodtensor\$data.
This tensor is builded by 2 layers of dataset matrix of different tissue type. The 11 matched phenotypes of
the same 152 samples are stored in buccalbloodtensor\$pheno.l. Among all the phenotype, Smoking is
the average smoking pack numbers per year of each sample and SmokingStatus is the sample’s smoking sta-
tus, which 0 stands for nonsmokers, 1 stands for ex-smokers and 2 stands for current smokers. A important
property corresponding to the input phenotype is whether the phenotypes are categorical, which is stored
in a boolean logical vector buccalbloodtensor\$pheno.i. Lastly, buccalbloodtensor\$testDMCs is the
1062 test CpG names. The first 1000 CpGs are the randomly picked non-smoking associated CpGs and the
last 62 CpGs are the smoking associated CpGs.

2.2 Estimate subspace dimension carrying significant variation

Before the decomposition, we need to estimate subspace dimension carrying significant variation in the first
step of dimension reduction. Function EstDim is based on Random Matrix Theory(RMT) algorithm to do
dimension reduction and output subspace size which can be discribed as the number of significant component
in further decompsition. Here in the output list, dim is a vector containing subspace size of each tissue type
matrix in dimension reduction, in another words, which is the number of significant components of each
tissue type matrix and dJ is the number of significant components of joint variation across all tissue type
matrices. These two parameters will be used in the next decomposing step.

> require(isva);

> Dim.l <- EstDim(buccalbloodtensor$data);

> dim <- Dim.l$dim;

> dJ <- Dim.l$dJ;

2.3 Perform tensorial ICA

The next step is to then decompose the buccal-blood tensor dataset using tensorial ICA to infer the sources
of data variation carrying significant variation. We observe that the function DoTICA uses tensorial PCA
(TPCA) as a preliminary step to do the dimensional reduction. The ’method’ parameter controls which
ICA method we use, with ’JADE’ and ’FOBI’ the two options available. Here we choose tFOBI method.
The output object tica.o contain respective rotation matrices U from TPCA step, unmixing matrices W and
source matrices S which are of the same size as input matrices containing the principal components.

> tica.o <- DoTICA(Data = buccalbloodtensor$data, dim = dim, method = "FOBI");

2.4 Correlate inferred components against phenotype

Now that we have estimated all the significant independent sources, a typical next step is to correlate the
inferred components against associated phenotypes. To help assess which components are correlated with
which phenotypes, the function cor phenotype provides a correlation P-value heatmap between phenotype
and the components. The P-values derive from a linear regression model in the case of continuous phe-
notypes, or from a Kruskal-Wallis/ANOVA test in the case of categorical phenotypes. We can also use
the function cor phenotype to visualize the mixing matrix component weights against phenotype. In the
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package, the associated phenotype buccalbloodtensor$pheno.l is a list of 11 matched phenotypes of the 152
samples. Among them, SmokingPackYear is the average smoking pack numbers per year of each sample
and SmokingStatus is the sample’s smoking status (0 stands for nonsmokers, 1 stands for ex-smokers and
2 stands for current smokers). We note that the components in the P-value heatmap are not ranked by
variance, since the components derived from ICA-like methods do not rely on variance for inference but on
higher order statistical moments (notably Kurtosis). Selection of components by variance is only used in the
prewhitening step, as implemented using TPCA.

> phenotype.p <- cor_phenotype(tica.o = tica.o, phenotype = buccalbloodtensor$pheno.l,

+ phenotype.is.categorical = buccalbloodtensor$pheno.i);

> phenotype.p$pv.p;
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SmokingPackYear
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TumInv

TumType
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Component

P
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P value

1e−10
1e−5
1e−3
0.05
N.S

From the P-value heatmap, we can now clearly see that component 10 and component 12 are significantly
correlated with smoking status and smoking pack years. Correspondingly, by plotting the weights we can
observe for instance a strong correlation between component 12 and smoking related phenotypes.

> phenotype.p12 <- cor_phenotype(tica.o = tica.o, phenotype = buccalbloodtensor$pheno.l,

+ phenotype.is.categorical = buccalbloodtensor$pheno.i,

+ component = 12);

> phenotype.p12$compheno.pl$SmokingStatus;
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2.5 Weights in feature space

The independent sources are defined over features, and the weights in these components inform us about
which features are important in driving those components. Thus, for instance, we can inspect which features
are driving component 12, which as shown above is associated with smoking. We note that for the sources
there is a pair of independent components associated with component-12, since there are two tissue-types.
Thus, a scatterplot of these pairs of components is appropriate, which we can do in the independent com-
ponent space or in the rotated basis (labeled by S’) where the two dimensions correspond directly to the
two tissue-types (as opposed to some linear combination). We can also plot either the weights or absolute
weights. The package provides a function to generate all of these plots. In this particular case, the red labeled
features correspond to the gold-standard smoking-associated CpGs and these should have larger absolute
weights in component 12 compared to non-smoking CpGs. This is confirmed with a Wilcoxon rank sum test
between smoking associated CpG (S) and non-smoking CpGs (N). The result shows significant differences in
all cases.
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2.6 Feature selection

More generally, we may not know a-priori which features are important or we may not have a feature
importance label. Typically, the task is to select features from the infered components, for which we provide
the function feature selection. The package provide two ways of selecting the number of top weighted CpGs.
First, we can estimate the number of driver features by assessing how much each feature contributes to the
kurtosis of the component. This is done in an iterative sequential manner where top-ranked features are
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subsequently removed until the resulting kurtosis falls below some prespecfied threshold. The threshold is
determined by a given upper kurtosis quantile as given by a Gaussian null distribution. This is the parameter
’CLkurt’ in the function feature selection. Alternatively, we can simply specify the number of top-ranked
features to select with the parameter ’topN’. The function returns the index list ’feature.n$pred.idx’, which
is list of the index of selected features in the two tissues. Here we only show the features selected in the first
tissue as an example. In this case, the function selects the top 67 CpGs.

> feature.k <- feature_selection(tica.o = tica.o, component = 12, CLkurt = 0.95);

> buccalbloodtensor$testDMCs[feature.k$pred.idx[[1]]];

[1] "cg12876356" "cg11207515" "cg25987452" "cg19945931" "cg23916896"

[6] "cg23161492" "cg13751956" "cg23079012" "cg18316974" "cg03636183"

[11] "cg16733643" "cg10500026" "cg23576855" "cg05575921" "cg12803068"

[16] "cg01940273" "cg08757924" "cg09469111" "cg01351337" "cg19670431"

[21] "cg02157475" "cg21242417" "cg03991871" "cg08880327" "cg23520688"

[26] "cg16505233" "cg06178322" "cg04621997" "cg00710180" "cg25648203"

[31] "cg24090911" "cg00969573" "cg09417849" "cg11577329" "cg26806511"

[36] "cg17863681" "cg26729913" "cg00078857" "cg26703534" "cg20457894"

[41] "cg26192556" "cg09095364" "cg02378784" "cg22352709" "cg07720851"

[46] "cg09509179" "cg26963277" "cg23771366" "cg00719224" "cg25921609"

[51] "cg01615339" "cg11660018" "cg12409982" "cg09935388" "cg23114183"

[56] "cg10606240" "cg24083631" "cg25575628" "cg21103074" "cg00699461"

[61] "cg21121843" "cg01249187" "cg07756483" "cg12806681" "cg16701266"

[66] "cg17248924" "cg19859270"

> feature.k$k.p[[1]];

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●
●

0

2

4

6

8

0 250 500 750 1000
Sorted S[1,12,] ID

K
ur

to
si

s

●

●

Non−selected
Selected

> feature.n <- feature_selection(tica.o = tica.o, component = 12, topN = 62);

> buccalbloodtensor$testDMCs[feature.n$pred.idx[[1]]];

[1] "cg12876356" "cg11207515" "cg25987452" "cg19945931" "cg23916896"

[6] "cg23161492" "cg13751956" "cg23079012" "cg18316974" "cg03636183"

[11] "cg16733643" "cg10500026" "cg23576855" "cg05575921" "cg12803068"

[16] "cg01940273" "cg08757924" "cg09469111" "cg01351337" "cg19670431"
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[21] "cg02157475" "cg21242417" "cg03991871" "cg08880327" "cg23520688"

[26] "cg16505233" "cg06178322" "cg04621997" "cg00710180" "cg25648203"

[31] "cg24090911" "cg00969573" "cg09417849" "cg11577329" "cg26806511"

[36] "cg17863681" "cg26729913" "cg00078857" "cg26703534" "cg20457894"

[41] "cg26192556" "cg09095364" "cg02378784" "cg22352709" "cg07720851"

[46] "cg09509179" "cg26963277" "cg23771366" "cg00719224" "cg25921609"

[51] "cg01615339" "cg11660018" "cg12409982" "cg09935388" "cg23114183"

[56] "cg10606240" "cg24083631" "cg25575628" "cg21103074" "cg00699461"

[61] "cg21121843" "cg01249187"

2.7 Feature profile

Finally, since we have selected features, the coresponding molecular profiles should be checked against phe-
notypes of interest. In this scenario, the DNA methylation profiles of selected features can be plotted against
smoking status and smoking pack years by function feature profile. By default, top 10 features are shown in
the plot.

> (profile.p <- feature_profile(Data = buccalbloodtensor$data,

+ phenotype.v = buccalbloodtensor$pheno.l$SmokingStatus, phenotype.is.categorical = T,

+ feature.index = feature.k$pred.idx[[1]][1:10], tissue.index = 1));
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> (profile.p <- feature_profile(Data = buccalbloodtensor$data,

+ phenotype.v = buccalbloodtensor$pheno.l$SmokingPackYear, phenotype.is.categorical = F,

+ feature.index = feature.k$pred.idx[[1]][1:10], tissue.index = 1));
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2.8 Check sensitivity

To check the accuracy of the methods, we can use function EstSE to estimate the sensitivity if the true
positive set is known.

> require(cowplot)

> SE <- EstSE(tica.o = tica.o, tp = 1001:1062);

> plot_grid(SE$se.p, SE$pv.p, nrow = 2);
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